Magnetic Materials: Macro, Micro and Nano

Stan Trout Spontaneous Materials October 8, 2001

Magnetic Hysteresis

A delayed response to a stimulus
In this case, the stimulus is an applied magnetic field and the response is the magnetization or flux density

Magnetic Hysteresis

Magnetic Anisotropy

- Properties that vary with the direction of measurement
 - Crystalline
 - Shape
 - Stress

Magnetocrystalline Anisotropy

Anisotropy in hexagonal crystals 213

Fig. 7.5 Magnetization curves for a single crystal of cobalt (by Kaya [7.3]).

Ferromagnetic Elements

			Gd	Тb	Dy	Но	Er	Tm	

Four types of Materials

- Soft Magnetic
- Hard Magnetic (Permanent Magnets)
- Recording
- High Flux

Soft Materials

- Low H_{ci}
- High Saturation
- Permeability
- Anisotropy, maybe
- Applications
 - Transformers
 - Inductors
- Materials
 - Fe, Si-Fe, Ni-Fe, Fe-B

Permanent Magnets

- High H_{ci}
- High Anisotropy
- High B_r
- Applications
 - Motors, sensors,
 - Actuators
- Materials
 - Alnico, Ferrite
 - SmCo, NdFeB

Recording Media

- Moderate H_{ci}
- Moderate B_r
- Applications Tapes, Films
- Materials
 - Fe₂O₃, CrO₂, Fe

High Flux

- High M_s
- Applications
 - Return path
 - Pole piece
- Materials
 - Fe, low carbon steel
 - Fe-Co
 - Ho

The Walkman circa 1930

Scalable Magnetic Field

MEMS Device

Conclusions

- In the past, we were asked to find new materials to fill a specific need or asked to explain the behavior of existing materials.
- In the future, we will be asked to find new materials to fill a specific need or asked to explain the behavior of existing materials.
- While the materials of interest change, the fundamental paradigm of Materials Science does not.