Permanent Magnet Figures of Merit: We need a better story

Stan Trout
SMMA Fall 2008 Technical Conference
October 17, 2008

Michael Faraday

Source: St. Andrews College

- Physicist & Chemist
- 1791-1867
- The Farad
- Explained much of what we know about magnetic forces
- Made some of the first electric motors and generators

Michael Faraday

Source: St. Andrews College

Energy Efficiency and Inflation
The Motor Design Challenge

SMMA 2008 Fall Technical Conference
October 15-17, 2008
Sheraton Westport Plaza Hotel, St. Louis

When asked by a
 politician what good
 they were, he replied
 "At present I do not
 know, but one day
 you will be able to tax
 them."

Outline

- Two common figures of merit
 - $-H_{ci}$
 - $-(BH)_{max}$
- What they tell us?
- What they don't tell us?
- Are they misleading?

- Other figures of merit
 - $-H_k$
 - $-(MH)_{max}$
 - Curie Temperature
 - Cost per pound
 - Flux/buck or J/\$
- Quality Factor
- Conclusions

H_{ci} and (BH)_{max}

Value of H_{ci}

What it tells us

- Strictly speaking
 - \circ At H_{ci}, M=0
 - \circ At H_c, B=0
 - $\circ H_{ci} \ge H_{c}$
- Resistance to demagnetization

What it doesn't tell us

- Behavior at other points
- Available flux
- Cost

Is it misleading?

- •Never used at H_{ci}
- As a thermal parameter

Value of (BH)_{max}

What it tells us

Related to flux in gap

$$B_{gap} pprox \sqrt{\frac{(BH)_{max}V_{magnet}}{V_{gap}}}$$

- Most magnets operate near (BH)_{max}
- Near (BH)_{max} is good enough

Energy Efficiency and Inflation The Motor Design Challenge SMMA 2008 Fall Technical Conference October 15-17, 2008 Sheraton Westport Plaza Hotel, St. Louis

What it doesn't tell us

- Resistance to demag
- Cost
- Thermal

Is it misleading?

- A 10% increase in $(BH)_{max}$ is only a 5% increase in B_{gap}
- Over emphasized

Spontaneous Materials

Definition of H_k

Value of H_k

What it tells us

- Loop "squareness"
- No droopy loops
- Better than H_{ci}

What it doesn't tell us

- Available flux
- Cost
- Thermal

Is it misleading?

Not really

Definition of $(MH)_{max}$

Curie Temperature

Value of T_c

What it tells us

- Strictly speaking
 - M=o at T_c
- Upper limit on use
- Universally understood

What it doesn't tell us

- Behavior at lower temps.
- Available flux
- Cost

Is it misleading?

- Never used at T_c
- No clue on realistic upper temperature limit

Basic Data

			- ,						_	
	Α	В	С	D	Е	F	G	Н	I	
1										
2										
3	Material	B _r	H _{ci}	(BH) _{max}	H_k	T_C	cost	density	energy/\$	
4		(kG)	(kOe)	(MGOe)	(kOe)	(°C)	(\$/lb)	(g/cm^3)	(J/\$)	
5	Ceramic 8	4	4	3.8	3.8	460	3	4.5	1.02	
6	Alnico 5-7	12.5	0.64	5.5	0.6	890	20	7.3	0.14	
7	MQ-1	6.9	9	10	3	360	60	6	0.10	
8	SmCo	10.7	28	27	18	825	100	8.5	0.11	
9	NdFeB	13.5	18	44	16	310	50	7.7	0.41	
10										
11										
12									-	
H 4	▶ ► Sheet1	Sheet2 / She	et3 / Sheet	4 / 📞 /					<u> </u>	
Read	Ready 120% —									

Cost data: Walt Benecki

Calculation of Joules/\$

1/cost
$$(BH)_{max}$$

$$\frac{J}{\$} = \left(\frac{lb}{\$}\right) \left(\frac{cm^3}{g}\right) \left(\frac{GOe}{1}\right) \left(\frac{454g}{lb}\right) \left(\frac{J/m^3}{125.7GOe}\right) \left(\frac{1m^3}{10^6 cm^3}\right)$$
1/density Conversion factors

Key Parameters

	A	В	С	D	Е	F	G	
2					_			
3	Material	B_r	H_k	T_C	energy/\$			
4		(kG)	(kOe)	(°C)	(J/\$)			
5	Ceramic 8	4	3.8	460	1.02			
6	Alnico 5-7	12.5	0.6	890	0.14			
7	MQ-1	6.9	3	360	0.10			
8	SmCo	10.7	18	825	0.11			
9	NdFeB	13.5	16	310	0.41			
10								_
Ready	t billett / billett	2 Sheet3 Sh	neet4 📞			150%		+
Ready						130% (=		•

Absolute Temperature

	А	В	С	D	Е	F	G	
2								
3	Material	B_{r}	H_k	T_C	energy/\$			
4		(kG)	(kOe)	(K)	(J/\$)			■
5	Ceramic 8	4	3.8	733	1.02			
6	Alnico 5-7	12.5	0.6	1163	0.14			
7	MQ-1	6.9	3	633	0.10			
8	SmCo	10.7	18	1098	0.11			
9	NdFeB	13.5	16	583	0.41			
10								•
Ready	Sheet1 Sheet	2 Sheet3 Sh	neet4 💘			150% (=)——	+

Normalized Data

	F/ ▼	Jx						*
	Α	В	С	D	Е	F	G	_
2								
3								
4	Material	B_r	H_k	T_C	energy/\$			
5	Ceramic 8	0.30	0.21	0.63	1			
6	Alnico 5-7	0.93	0.03	1	0.13			
7	MQ-1	0.51	0.17	0.54	0.10			
8	SmCo	0.79	1	0.94	0.11			
9	NdFeB	1	0.89	0.50	0.40			
10								
Ready	oneder y bridge	2 / Sheet3 Sh	neet5 Sheet4	₹ 9/		150% (=		+

Best in column=1

Spontaneous Materials

Quality Factor

	F6 ▼	Jx				*				
	Α	В	С	D	E					
2										
3			Quality Factor							
4	Material	product	sum	product w/o Tc	product w/o J/\$	■				
5	Ceramic 8	3.9%	2.14	6.3%	3.9%					
6	Alnico 5-7	0.4%	2.09	0.4%	3.1%					
7	MQ-1	0.5%	1.32	0.8%	4.6%					
8	SmCo	8.4%	2.85	8.9%	74.8%					
9	NdFeB	18.0%	2.79	36.0%	44.6%					
10						_				
Ready Sheet1 Sheet3 Sheet5 Sheet4 * III III III III III III III III III										

Conclusions

- H_{ci} and $(BH)_{max}$ are useful but insufficient
- The Quality Factor may be more enlightening
- The Quality Factor can be made application specific
 - Omit irrelevant parameters
 - Accentuate critical parameters
- If you want the spreadsheet, send me a note strout@ieee.org

