The Rare Earths: Top Spot for the Bottom of the Periodic Table

S. R. Trout October 21, 2013

Outline

- Background
 - Personal
 - Rare Earths
- Rare Earth Sources
- Rare Earth Applications
 - Lighting
 - Catalysts
 - Magnets
- Recycling
- The Future, Why is it so complicated?

Background

Stops along the way

- Univ. of Pennsylvania
- Companies
 - Recoma
 - Crucible
 - Hitachi
 - Magnequench
 - Molycorp
- Academic
 - Metro State University of Denver
 - Marian University
 - Alma College
 - Ellis University
 - Ivy Tech
- Consulting

Rare Earths

Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu

Rare Earths

- Ores contain all rare earths except Pm
- The rare earths are chemically very similar
- There is no shortage of ore
 - Bastnasite & Monazite are the most common
- Most ores are rich in Ce, La, Nd and Pr
 - Not all rare earths are rare in the Earth
- Magnetic, optical, electronic and catalytic properties vary widely
- The lanthanide contraction
- Producers try to balance supply and demand
 - And are rarely successful!

Dilbert, February 28, 2011

Critical Materials Hub

- DOE Program
 - \$120 million, 5 years
 - National Labs
 - Academe
 - Industry
- Reduce criticality

Source: DOE Announcement May 2012

Recent RE Metal Prices

Global Rare Earth Production Trends

Source: U.S. Geological Survey

Spontaneous Materials

Bayan Obo mine , near Baotou, China Photo from Google Earth

Mountain Pass, CA, source: Molycorp

Rare Earth Sources

- Active mines
 - China
 - Baotou
 - Ionic Ores
- Mines coming on stream
 - USA
 - Mountain Pass, CA
 - Australia
 - Mt. Weld

- Under Development
 - Australia
 - Nolan's Bore
 - Canada
 - Hoidas Lake
 - Nechalacho
 - India
 - Brazil
 - Vietnam
 - Russia

Rare Earths

Separating the Rare Earths

Source: ORNL

Rare Earth Markets

Do the markets change over time?

Dollar basis 2008

Source: IMCOA

Early Lighting Options

Welsbach Candoluminescence

Source: Gas Light Guys

Source: Auer Licht

Edison Incandescence

Source: Wikipedia

Lighting Phosphors

Lighting Phosphors

• Red: Y₂O₃: Eu

Green: (La, Ce, Tb) PO₄

Blue: BaMgAl₁₀O₁₇:Eu

 What we see depends on phosphor quality Compact Fluorescent Lights (CFL)

Source: GE Lighting

Fluorescent Lighting

- Advantages
 - Higher output
 - 58 lu/W vs. 13.5 lu/W
 - Lower operating cost
 - 10 W vs. 40 W
 - Longer life
 - 12,000 hrs vs. 1,000 hrs

Data source: GE Lighting

- Disadvantages
 - Slightly higher price
 - Difficulty dimming
 - Unappealing light?
 - Cheap bulb = cheap phosphor
 - Hg in bulb, special disposal preferred

Automotive Catalysts

Source: BASF

Refining Catalysts

- Fluid Cracking Catalyst (FCC)
 - Ideal for heavy crude to make gasoline
 - Ion-exchanged zeolite (cat litter)
 - Variable demand
 - Driving season and heating season
 - Available crude

Rare Earth Magnets Applications

- Hard drive
 - Voice Coil Motor (VCM)
 - Spindle motors
 - 5x10⁸ per year

Source: Western Digital

Rare Earth Magnets Applications

- Automotive
 - Hybrids
 - Electric vehicles

Source: Toyota

Recycling

- Historically unimportant
 - Low value
 - Difficulty

- Interest rises and falls with prices
- Center of Resource Recovery and Recycling
 - Eu, Tb and Y oxides from lighting phosphors
 - Nd and Dy from magnets, mainly hard drives

The Future

- Niels Bohr, "Prediction is very difficult, especially about the future."
- Supply and Demand are dynamic
- Overreacting and underreacting are normal
 - Supply
 - Demand
 - Investors
 - Government
- Finding equilibrium is difficult & takes time
- Energy conservation is a major driver
- Flexible companies are most likely to survive
- Rigid companies are least likely to survive
- We need to use these materials wisely

Rare Earths

Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu

