Rare Earth Permanent Magnets: Raw Materials, Magnets and Opportunities

S. R. Trout

Outline

- Background
- Raw Materials
- Rare Earth Magnets
- Applications
- Final Thoughts

Background

SmCo₅

Background

Previous Intermag Conferences

- 1976 Pittsburgh
- 1979 New York
- 1980 Boston
- 1981 Grenoble
- 1982 Montréal
- 1983 Philadelphia
- 1985 St. Paul

- 1986 Phoenix
- 1987 Tokyo
- 1989 Washington D.C.
- 1991 Pittsburgh
- 1994 Albuquerque
- 1995 San Antonio
- 2000 Toronto
- 2001 San Antonio

Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu

- Ores contain all rare earths except Pm
- There is no shortage of ore
 - Most rare earths are not rare
- Most ores are rich in Ce, La, Nd and Pr
- The rare earths are chemically very similar
- Producers try to balance supply and demand

- Ores contain all rare earths except Pm
- There is no shortage of ore
 - Most rare earths are not rare
- Most ores are rich in Ce, La, Nd and Pr
- The rare earths are chemically very similar
- Producers try to balance supply and demand
 - And are rarely successful!

Bayan Obo mine , near Baotou, China Photo from Google Earth

Mountain Pass, CA Photo from Molycorp

Source: U.S. Geological Survey

- Active mines
 - China
 - Baotou
 - Ionic Ores
- Mines in transition
 - USA
 - Mountain Pass, CA

- Inactive mines or deposits
 - Australia
 - Mt. Weld
 - Nolan's Bore
 - Canada
 - Hoidas Lake
 - Thor Lake
 - India
 - Brazil
 - Vietnam
 - Russia

Issues

- Lack of viable ores
 - Most rare earths are not rare
- Shortage of Neodymium
 - A self-regulating market
 - Price
 - Design
 - Application

- Dysprosium and Terbium
 - Constrained
- Abrupt changes are extremely disruptive
 - Upsets balance
 - Capital intensive industry
 - Lengthy recovery

Materials

- Sm-Co
 - SmCo₅
 - 2-17, Sm₂(Co,Fe,Cu,Zr/Hf)₁₇
- Nd-Fe-B
 - $(Nd,Dy)_2(Fe,Co)_{14}B$

Questions

- When?
- Who?
- Where used?
- Speed of implementation?

- Unfinished business
 - The H_{ci} of Nd-Fe-B
 - Why do Dy and Tb Increase H_{ci}?
 - Updating the 1985 explanation

Source: Livingston 1985

- Unfinished business
 - The H_{ci} of Nd-Fe-B
 - Why do Dy and Tb Increase H_{ci}?
 - Updating the 1985 explanation
 - Controlling β, the temp. coefficient of H_{ci}
 - Wiser use of Dy and Tb
 - Anisotropic bonded Nd-Fe-B
 - Recycling, reuse
 - Lower cost

Rare Earth Magnets Applications

- Hard drive
 - Voice Coil Motor (VCM)
 - Spindle motors

Source: Western Digital

Applications Head

Source: Magnequench

Rare Earth Magnets Applications

- Automotive
 - Hybrids

Source: Toyota

Rare Earth Magnets Applications

- Wind Turbine
 - Magnet vs.asynchronous
 - One tonne of magnet per turbine
 - The future?

Rare Earth Magnets The Dy Issue

Source: Magnequench

Final Thoughts

Raw Materials

- Issues
 - Dysprosium
 - Sudden changes
- Opportunities
 - Green technologies
 - Magnets
 - Ni-metal hydride batteries
 - Lighting phosphors

Rare Earth Magnets

- Issues
 - Dysprosium
 - What does it really do?
 - How can we use less of it?
 - Limited production outside
 China
- Opportunities
 - Hybrid vehicles
 - Wind turbines
 - Recycling

Final Thoughts

Presentation will be available on www.spontaneousmaterials.com

