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A BSTRAC.T 

A statist ical   model is developed  to  describe  the 
orientation of particle  easy  axes  with  respect  to  the  a- 
lignment  direction  in  sintered  SmCoj  magnets.  The 
model  can  be  used  to  describe  the  three-dimensional 
orientation  distributions  measured by Swift et   al .1us- 
ing  x-ray  techniques,  and  with  appropriate  modifica- 
tion,  the  two-dimensional  orientation  distributions 
measured  metallographically by Martin.’ 

The  distribution  is  described by a single  para- 
meter  13, analogous  to  the  standard  deviation of a 
Gaussian  distribution.  For a  given 8 ,  the  model  pre- 
dicts  the  ratio of remanence  to  saturation  and  also  the 
shape of the magnetization  curve  measured  in  decreas- 
ing  fields when the  field is  applied  perpendicular to 
the  alignment  axis.  The  effective  anisotropy  and  the 
value of B can  be  determined by comparison of experi-  
mental   and  calculated  curves.  

INTRODUCTION 

In a previous  paper,  we have  reported a 
method  based on a comparison of measured  hard-axis 
magnetization  curves  with  computed  curves,  to  deter- 
mine  the.anisotropy  and  the  degree of particle  misa- 
lignment  in  sintered  SmCo5  permanent  magnets.  This 
paper  will  develop  this  method  from  an  assumed  dis- 
tribution of particle  orientations  to  the  calculation of 
hard  axis  magnetization  curves  in  decreasing  fields, 
and  extend  the  method  to  predict  other  magnetic  quan- 
t i t ies.  

PARTICLE  DISTRIBUTION 

The  orientation of a single  particle is descr ib-  
ed i n  Fig.  1.  The  distribution of particle  easy  axes 
is   assumed  to   be  normal   in   terms of @ and  uniformly 
distributed  in 9 . In spherical  coordinates,  the  distri- 
bution is of the f o r m  

f(0, e )dA=k ~ q ~ ( - @ ~ / B ’ ) s i n 0 d 0 d e   ( 1 )  
where  dA=sin@d@de is an  element of spherical   area.  
This  describes a distribution  with a maximum  at  0=0, 
decreasing  exponentially  with 0 a s  0 depar t s   f rom 0 in 
any  direction  from  the  axis of orientation.  The  quan- 
t i ty  measures  the  degree of particle  misorientation; 
small  B means good alignment.  The  function  f(0, 0 )  
is defined  for  the  region 0 < 0 2 n / 2  and  OseSZa,  and k is  
the  normalization  constant  which is  determined by the 
condition 

If $ c n / 2 ,   w h x h  1 s  true  for  the  cases of interest ,  the 
upper  limit of V I 2  on 0 can  be  replaced by infinity. 
Then  the  integral  in  equation ( 2 )  or   any  integral  of the 
f o r m  

JA f y ,  e)dA=l. (2  1 

I (m)= Imj27if ( @, 0 ) grn sin@d@df3,  m=integer 
0 0  (3 1 

can  be  evaluated by expanding  sing a s  a Taylor  series.  
The  solution  can  then  be  written a s  

Fig. 1. Definition of 
angles  used t o  describe 
particle  orientations. 

[I 001 

I(rn)=Tk 1 03 ( -l y 1  a 2n+m 

n= 1 ( 2n-1)! 

(n+m/2 ) where r i s  the 
gamma  function. 

(4 ) 
The  normalization  condition  expressed  in ( 2 )  can now 
be wr i t tea   as ,  
I(O)=nk 1 (-l)n-1B2nr(n)/(2n-1)!=1, (5)  

so that c=dan  be  written a s  a s e r i e s ;  
k = l  /n (B2-B4/6tg6/60-88/840t . .  .). ( 6 )  

The  result  in ( 5 )  was  originally  given by Legendre, 
using a different  method.  For  our  calculation,  the 
f i rs t   four   terms of the s e r i e s  w i l l  be used.  Clearly,  
I (1)  and  I(2)  represent  the  f irst   and  second  moments 
of f (0 ,  e )  for 0,  s o  that  the  ‘mean, U ,  and  the  variance, 
02, a r e  give2 by 
~=I(l)=nk 1- ( -l)n-l a 2n-1 

4 

r ( n + g  ) / (  2n-1) 
n = l  

-Jii B ( 1-8 2 / 4 + 8  ‘/X-@ 6 / 3 8 4 + .  . . 1 (7 1 
- ( 1-6 2/6+B ‘ / G O - @  6 / 8 4 0 + .  . . ) 

and 

CT 2 =1(2)-1(1) = 
2 2( 1-8 2/1+5 4/20-B 9 2 1 0 + .  . . 1 

( 1-13 ’/6+R ‘/6O-B 6 / 8 4 0 + .  . . 
$ (1-6 2 / 4 + ~  ‘/32-B 6 / 3 8 4 + .  . . j 2  2 (8)  - -  

4 ( 1-8 2/6+B ‘ /6O-B 6 / 8 4 0 +  - . . 
For   smal l  8, p =Jn!3/2 and O2 = BZ(1-n/4).  This  a- 
grees  with  the  results  obtained  for a Rayleigh  distrib- 
ution, 5* which  describes a normal  distribution  a- 
bout a point  in a plane a s  opposed  to  the  case  treated 
here  which is a distribution  about a point on the  sur- 
face of a sphere.  
Comparison of the  assumed  distribution with experi-  
ment. 

have  measured  the  distribution of (0001)  planes  in  sin- 
tered SmCog magnets.  The  volume  fraction of (0001)  
plane  orientations  measured on their  best  aligned  sam- 
ple is   plotted  in  Fig.  2.  Since  the  volume  fraction  at 
each  orientation  was  measured, tlie histogram  should 
represent  f(0,  0) for a, certain  value of B.  If the  dis- 
tribution  measured by  Swift e t   a l ,   i s   the   same as the 
distribution  given  in  equation (l), then a plot of 
ln(f(0,0))   vs  0’ will  be  linear  and  have a slope of 1/P . 
For  this  sample,  the  value of B obtained  in  this way 
was  0.38.  However, a histogram  calculated  for 8=0.43 
agreed  better  with  the  experimental  distribution,  as 
shown  in  Fig.  2a.  Even  better  agreement is obtained 
by assuming a fraction 0 .26  of the  par t ic les   are   dis-  
tributed  completely  at  random  with  the  remaining  0.74 
fraction  aligned  with $=O.  34. This  distribution i s  com- 
pared  with  the  measured  data  in  Fig.  2b,  and  the  a- 
greement  is   excellent.  

Using  the  Schulz  x-ray  method, Swift e t   a l .  1 

2 

D. L.  MartinZhas  reported a method of metal-  
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Fig. 2. Distribution of particle  axes i n  a sintered 
SmCo5  magnet  measured by Swift  et  al. a (left), 
The  measured  histogram  and a calculated  histogram 
for  = 0.43.  b (right),  The  histogram  with a n  
assumed  rahdom  fraction of 0 . 2 6  removed  and a 
calculated  histogram  for B = 0.34. 

lographic  analysis  to  determine  the  texture of SmCo5. 
On heat  treating a sintered  sample  for 10  days a t  1025 
K, SmGo  undergoes a eutectoid  decomposition, 
~ m G o 5   - t J m 2 ~ o ~ + ~ r n ~ ~ o ~ ~ .  Lamellae  precipi ta te   pre-  
ferentially on the  basal  plane of the  hexagonal  SmCo5, 
as shown  in  Martin's  micrograph,  Fig. 3.  A grid is  
placed  over  the  micrograph,  and  an  angle of misori-  
entation g '  is  measured  at   each  point 9n the  grid.  (The 
angle of misorientation  measured by Martin w a s  a c -  
tually @'tn/Z and is redefined  here  to  simplify  the  com- 
parison  with  the  model).  Fig. 4 shows a histogramof 
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F i g .  4. Histogram of 
measured a '  f r o m  
Martin7  and a histogram 
calculated  for 8 = 0.28. 
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4' ( D E G R E E S )  

The  angle  0',  however, is not  equal  to  the  an- 
gle 0 defined  in  Fig.  1.  The  angle @ '  is the  projection 
of @ onto  the  plane of the  metallographic  section- of 
the  sample.  The  geometric  relationship  between 0 '  
and @ i s  shown in  Fig.  5. Mathematically,  the  rela- 

argument. 
tionship  between a '  and @ i s  shown  by  the  following 

If P and P' are  taken  to  be  unit  vectors,  their 
coqponents  in  Cartesian  coordinates.are, 

P =[cos6sin0,  sinesing,  cos@]  and 

3 -9 

101 

i3 '= [ sing', 0,  cos^'^ 
If a is defined a s  the  angle  between P and s', + 

then + 

cosu = P*P' = cosesin0sinQ' t cos0cos0' 
The  law of spherical  angles  gives 

Dividing  by  cos@, we have 
~ 0 ~ ~ = ~ 0 ~ a ~ 0 ~ Q ' = ~ 0 ~ 8 ~ i n ~ s i n 0 ' c o s ~ ' t c o s & o s  2 0' 

I = cosetangsind'cosg' t ~ 0 s ~ ~ ) '  
tan0' = cosetan0. ( 9 )  

4 
ALIGNMENT AXIS 

F i g .  5. 
between 

A n  assumed  distribution  obeying (1) for a fixed B can  be 
converted  to a predicted  projected  two-dimensional  dis- 
tribution by using  equation (9). Fig. 4 shows a histo- 
gram  calculated  for B=0.28 superimposed on Martin's 
measured  histogram;  the  agreement  is good. It seems 
unnecessary i n  this case to  assume a random  component. 
Calculation of magnetization  curves. 

To  calculate  the  magnetization of an  assembly 
of single  domain  particles  whose  distribution  about  an 
alignment  axis  is  given  by ( l) ,  we consider  the  torque 
exerted by an  applied  field H -+ on the  particles  whose 
orientation is in  an element of spher ica l   a rea  dA. 
This  torque i s  exactly  balanced  by  the  crystal  aniso- 
tropy  torque  acting  to  hold  the  magnetization  along  the 
local  easy a5is P. Thus 

H x M, = dEk/dY 
where Y i s  defined  in  Fig.6a  for  the  case when H is ap- 
plied  perpendicular t," the  alignment  axis  and  in  Fig. 
6bfor  the  case  when H i s  applied  parallel  to  the  align- 
ment  axis.  Since  Ek = K1sinZytK2sin4Y  for a hexa- 
gonal  crystal,  equation (10) can  be  expressed  as 

HMssin(~.-Y)=K~sin2Yt2K2sin2Ysin2Y 

=Klsin2Y(l+%  sin2Y)  (11) 

(104 

K l  
for  the  perpendicular  field  case  and 

HMssin(0-Y)=K~sin2Y+2K~sin2Ysin2Y 

=K1sin2Y(1t-2sinZY) 2K (12) 
K1 

for  the  parallel  field  case.  For  any  combination of 
H, 0, 6 , K 1 ,  and  Kz/Kl,   equations ( 1 1 )  or (12) can be 
used  to  determine Y for  the  particles  whose  orienta- 
tion  is  in dA. 

Fig. 6.  Definition of angles i n  an  applied  field. 
a ( left) ,   f ield  parallel   to  hard  axis.  b (right) ,   f ield 
parallel  to  easy  axis. 
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To  obtain  the  resultant  magnetization of the 
ent i re   sample,  it is  necessary  to   sum the  individual 
contributions of each  unit   area dA. Thus,  Ml  /Ms 
can  be  found by evaluating  the  integral 

Ml /Ms  = E 1: cos(x-y)f(D,e)sinsdade 
(131 

Similarly,  M, /Ms i;,pven by 
. .  I ,  

M,, /Ms  = 1: cos(0-~)f(0,e)sin8d0de 
0 (14) " -  

In pract ice ,  the integrals  (13)  and  (14)  can  bL-solved 
using  the  computer  to  generate MI /Ms  or  Mu  /Ms  vs 
h(=HMs/(2K1t4K2))  curves,   for  selected  values of d .  
The  results of calculations  based on (13)   a re  given i n  
Table I for  KL=O. Table I1 gives  the  results of cal-  
culations  based on (14)  for  the  special  case  when 
H=O, Y=O, for  which M,, /M-=M,/M,,  the  ratio of r e -  

300 I - EXPERIMENTAL HYSTERESIS LOOP 
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H ( k O e )  
Fig. 7. An experimental   hard  axis  hysteresis  loop 
for  SmCo5  compared  to a calculated  demagnetizin 
curve.  The  calculated  curve is for  K ,  = 2 . 6  x 10 8 

manence  to  saturation,  or  remanence  ratio  (some- e rgs /cm3,  K, = 0, and f3 = 0 .25 .  
. * L C 3  
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times  called  the  alignment  factor). 
I 
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p ~ 0 . 0 5  

0,028 
0.127 
0.226 
0.323 
0.420 
0.516 
0.610 
0.702 

0.874 
0 944 
0.990 
0.996 
0.998 
0.999 
0,999 

0 790 

#3 =0,10 

0.056 
0.154 
0.251 
0.347 
0 440 
0,532 
0.620 
0.706 
0.787 

0.923 
0.976 
0.990 
0.994 
0.996 
0.998 

0.861 

MJMS vs h for several values afp.  

Bm0.15 Bz0.20 8 ~ 0 . 2 5  8=0.30  

0.084 0.111 0.138 0.164 
0,181 0.207 0.233 0.258 
0.276 0.301 0.324 0.347 

0.460 0.478 0.496 0.513 
0.369 0.391  0,412  0.432 

0.547 0.562 0.576 0.590 
0.631 0.642 0,652 0.663 
0.711 0.717 0.723 0.730 
0.786 0.786 0,789 0.792 
0.853 0.849 0.847 0,846 
0.910 0.901 0.895 0.892 
0.964 0,956 0.949 0.949 
0.982 0.976 0.971 0.967 
0.990 0.985 0.982 0.978 
0.993 0.990 0.987 8.985 
0,995 0.993 0.991 0.989 

pri0.35 

0.190 
0.281 
0.368 
0.451 
0.530 
0.604 
0.673 
0.737 
0.795 
0.847 
0.890 
0.940 
0.963 

0.983 
0.976 

0,987 

,IS ~ 0 . 4 0  

0.214 
0.304 
0.389 
0.470 
0.546 

0.683 

0.799 
0.848 
0.889 
0.938 
0.961 
0.973 
0.981 
0.986 

0.617 

0 744 

p -0.45 

0.238 

0.409 

0.560 
0.629 
0.692 
0.751 
0.804 
0.850 
0.889 
0.936 
0.959 
0.972 

. 0.979 
0.984 

0.326 

0 487 

TABLE I1 

B Mr/M 

. 05  .998 

.06 .998 

.07 .997 

.08 .996 

.09 .996 

. 1  .995 

. l l  .994 

.12 .992 

. I 3  ,991 . 14 .990 

B 
.15 
.16 
.17 
.18 
.19 
.2  
.21 
.22 
.23 
.24 

Mr/Ms B Mr /Ms B 

.989 . 2 5  .969 .35 

.987 . 2 6  967 . 3 6  

.986 .27 .964 .37 

.984 .28 .962 .38 

.982 .29 .959 .39 

.980 . 3  .956 . 4  

.978 .31 .953 .41  

.976 .32 .950 .42 

.974 0 33 .947 .43 

.972 .34  .944 .44  

Mr lMs 
.941 
.938 
.934 
.931 
.928 
.924 
.920 
.917 

.909 

.913 

Experimental   hard  axis  magnetization  curves 
have  been  compared  to  the  calculated  magnetization 
curves  in  Table I to  find  the  combination of K1 and e 
which  gives  the  best  agreement  between  experimental 
and  calculated  curve^.^ There  is excellent  agreement 
between  calculated  and  experimental  curves, as shown 
in  Fig. 7, in  decreasing  applied  f ields  from 100  to 20 
kOe. It is  in  this  region  where  the  magnetisation is  
expected  to  change  by  rotation as assumed  in   the  cal-  
culation. 

C ONC  LUSIONS 

We have  presented a mathematical   model  for 
the  orientation of individual  particles  in  an  aligned 
compact.  For  the  specific  case of s intered SmCo5 
magnets,  the  model  agrees,with  x-ray,  metallograph- 

ic, and  magnetic  ,measurements on  SmCo5.  The 
model  has  been  used  to  determine  the  anisotropy  con- 
stant  and  the  degree of misorientat ion  f rom  hard  axis  
magnetization  curves of SmC,05 and  can  be  used  to 
predict   o ther   magnet ic   parameters   such  as   Mr/Ms 
and (BH) max. 
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