

Material Selection of Permanent Magnets, Considering Thermal Properties Correctly

Stanley R. Trout
EMCW Expo 2001
Cincinnati, OH
October 17, 2001

An Entrepreneur

A person who happily works 16 hours a day for himself, to avoid working 8 hours a day for someone else.

Demagnetization curves

Spontaneous Materials

Notes:

Four Families of Permanent Magnets

	Ferrite	Alnico		SmCo		Nd	FeB
Property	Ceramic 8	Alnico 5	1-5	1-5 TC	2-17	Bonded	Sintered
$B_{r}(kG)$	<mark>4.0</mark>	12.5	9.0	6.1	10.4	6.9	13.4
α (%/°C)	-0.18	-0.02	-0.045	<u>-0.001</u>	-0.035	-0.105	-0.12
(BH) _{max} MGOe	3.8	5.5	20	9	26	10	43
H _{ci} (kOe)	3.3	0.64	<mark>30</mark>	<mark>30</mark>	<mark>25</mark>	9	15
β (%/°C)	<mark>+0.4</mark>	-0.015	-0.3	-0.02	-0.3	-0.4	-0.6
H _s (kOe)	10	3	20	40	30	35	35
T_{c} (°C)	460	890	727	729	825	<mark>360</mark>	<mark>310</mark>

The quantity α is the reversible temperature coefficient of B_r . (20 °C to 100 °C minimum)

The quantity β is the reversible temperature coefficient of H_{ci} . (20 °C to 100 °C minimum)

The field required to saturate the magnet is H_s.

TC means temperature compensated. [References 1, 2]

Curie Temperature

Reversible Temperature Coefficients

•
$$\alpha = 1/B_r (\Delta B_r / \Delta T) \times 100\%$$

•
$$\beta = 1/H_{ci} (\Delta H_{ci}/\Delta T) \times 100\%$$

Demagnetization Curves @ Temp.

Irreversible Loss

Key parameters

- Temperature
- Time
- Loadline, self demagnetization
- Adverse field, armature reaction

Comments

- Logarithmic
- Recovered be remagnetization
- Properly saturated

Structural Loss

- Structural losses are not recovered by remagnetizing
- Both due to a thermal event
- May be lumped together

Maximum Operating Temperature

- No standard definition
- Loss or linearity?
- More confusing than helpful

A proposed definition

The highest temperature where the B vs. H curve remains linear from B_r to B/H=1, *and* where the irreversible losses at B/H=1 flatten out over time, i.e. show essentially no additional irreversible loss after 100 hours.

H_{ci} as a "Thermal" Property

H_{ci} as a "Thermal" Property

Summary

Parameter	How used?	Comments	
Curie temperature, T _c	Absolute temperature limit	Helpful for material development, not helpful for designers	
Reversible temperature coefficients, α , β	Estimate curves at temperature when data not available	Good tools	
Demagnetization curves at temperature	Model performance at temperature	Fundamental data, essential for modeling	
Irreversible loss	To de-rate curves at temperature for	Very design specific	
Structural loss	accurate performance estimates		
Maximum operating temperature	To compare materials	No standard definition, dangerous to use without considering definition	
Intrinsic coercive field, H _{ci}	To compare materials	Not as useful as other parameters	

Conclusions

- Understand thermal envelope of the design
- Consider magnet thermal properties as an integral part of the design process
- Prioritize thermal behavior, i.e. low irreversible loss, best curve at temperature, etc.
- Remember demagnetization curves at temperature and irreversible loss are typically the most important characteristics
- The industry needs to adopt a standard definition for Maximum Operating
 Temperature
 Spontaneous Materials