

Understanding Permanent Magnets An Attempt at Universal Magnetic Literacy

Stanley R. Trout EMCW Expo 2000 Cincinnati, OH October 31, 2000

The Three Vectors, CGS version

$\mathsf{B}=\mathsf{H}+4\pi\mathsf{M}$

The Three Vectors, SI version

$$\mathsf{B} = \mu_0 \mathsf{H} + \mu_0 \mathsf{M}$$

$$J = \mu_0 M$$

Magnetic Hysteresis, M vs. H

Magnetic Hysteresis, B vs. H

Demagnetization curves

Demagnetization curves

Four Families of Permanent Magnets

Property	Ferrite	Alnico	Sm	nCo	NdFeB				
	Ceramic 8	Alnico 5	Recoma- 20	Recoma- 26	Ugimax 43A2	MQ1-B	MQ2-E	MQ3-F	
B _r (kG)	4.0	12.5	9.0	10.4	13.4	6.9	8.25	13.1	
(BH) _{max} MGOe	3.8	5.5	20	26	43	10	15	42	
H _{ci} (kOe)	3.3	0.64	30	25	15	9	17.5	16	
T _c (°C)	460	890	727	825	310	360	335	370	

The Rare Earths

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu

Bonded NdFeB benefits

- Smaller size
- Lower weight
- Higher efficiency
- More torque
- Improved low temperature performance

Checklist: ferrite to bonded NdFeB conversions

Material selection

- Select primary consideration: high B_r , high H_{ci} , high T_c , low irreversible loss, low cost
- Verify manufacturability with supplier
- Magnetic circuit analysis
- Don't copy ferrite dimensions or shapes, especially in motors, rings are the preferred shape for bonded NdFeB with 4 or more poles
- Check that other flux carrying parts, return path, laminations etc. are not saturated

Corrosion protection

• Coat or overmold? Determine if necessary

Checklist: ferrite to bonded NdFeB conversions

Magnetizing

- Apply adequate magnetizing field, verify magnets are really saturated. New fixture and magnetizer likely
- Verify that the flux is correctly oriented in the fixture; unlike anisotropic magnets, isotropic bonded magnets assume the same flux pattern supplied by the fixture

<u>Temperature</u>

- Determine maximum operating temperature
- Verify material is compatible with this limit
- Determine irreversible loss, if necessary
- Check effect of armature reaction at the maximum operating temperature

Redesign comparison

	Constant S	tack Length	Constant Diameter			
Magnet Material	Diameter (mm)	% Reduction	Stack length (mm)	% Reduction		
Ceramic 8	48	0	48	0		
MQIM™-O w/ PPS	39.2	18.3	44	8.3		
MQIM™-B+ w/nylon 11	36.9	23.1	43	10.4		
MQ1™-O	33.8	29.6	41.5	13.5		

- Appliance motor, 2 pole
- Redesigned to maintain similar performance
- Two approaches: constant stack length and constant diameter
- Thicker wire, fewer turns, wider rotor teeth
- Higher efficiency

Education on Magnetic Materials

- Need
- Resources
- Methods

Summary

- Review of hysteresis
- Salient features of permanent magnet materials
- Rare Earths
- Ferrite to bonded magnet checklist and comparison
- Magnetic education