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Abstract—In a recent publication, Lewis et al. [2014] introduced a 

new equation to define the reversible temperature coefficient of HcJ, 

commonly called β. While the new equation is mathematically 

correct, in practice it leads to numerical values differing from the 

original definition, in some cases substantially. This paper 

investigates the old and new definitions, and demonstrates why the 

old equation is a better choice for reporting the reversible change in 

HcJ with temperature. 

 

I. INTRODUCTION 

The introduction of Nd-Fe-B magnets over three decades ago 

marked the beginning of an era of permanent magnets with modest 

Curie temperatures (TC). Consequently, being able to quantify, 

compare and predict the reversible changes in magnetic properties 

with temperature is an important practical consideration. Similarly, 

the thermal characteristics of any newly developed materials must be 

explored for benchmarking purposes.  

Two coefficients commonly used for this purpose are defined in 

the equations below, 
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where α is the reversible temperature coefficient of the remanence, 

Br, and β is the reversible temperature coefficient of the intrinsic 

coercivity, HcJ. In practice, the coefficients are calculated by 

selecting data at two different temperatures, commonly room 

temperature and an elevated temperature. As we shall see, neither Br 

nor HcJ vary linearly with temperature. Therefore, it is important to 

report the temperature range used for the measurement, otherwise 

the results can be misleading. 

The coefficients α and β are frequently used to compare two 

competing materials with otherwise comparable other magnetic 

properties. Materials with values of α and β closer to zero are 

considered desirable. Consequently, maintaining rigorous, “apples to 

apples” or like to like comparisons is very important. 

The following equation was used by Lewis et al. [2014] to define 

β of a particular Fe-Ni phase found in meteorites 

   
 ln cJd H

dT
    (3) 

At first glance, this equation appears somewhat different than 

equation (2). However, this discrepancy is easily clarified with some 

rudimentary Calculus. If we wish to use equation (2) to determine 

the value of β at a specific temperature, we would write 
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But equations (3) and (4) are equivalent, since basic differential 

Calculus tells us that 
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(Kahn Academy [2017] offers a more complete explanation of this 

derivative.) The critical difference between equation (2) and 

equations (3) and (4) is the magnitude of ΔT. The ΔT in equation (2) 

can easily be on the order of 100 K, as it is typically used. In 

contrast, because equations (3) and (4) are derivatives, they must be 

considered as ΔT approaches zero. 

An obvious question to consider is: does the choice of equation to 

determine β affect the result? 

 

II. APPLICATION TO REAL MATERIALS 

In the Tables below, the values for β are calculated for two grades 

of sintered Nd-Fe-B sold by Vacuumschmelze as VACODYM 

grades 3230 and 4514. The 3230 grade has a relatively large value of 

HcJ and a relatively small value of β, while the 4514 grade has more 

modest values of both HcJ and β. For comparison, both equations (2) 

and (3) are used to find β in the following tables. In this analysis, 

equation (3) needs to be rewritten in the Δ format, in light of the 

discrete nature of the experimental data. 

 

Table 1. Values of HcJ at various temperatures for VACODYM 

3230. Calculation of β using Equations (2) and (3). The value of HcJ 

at 20 °C is used as the low temperature value in both equations. 

Temp (°C) HcJ (kOe) ln (HcJ) β  (1/K) β  (1/K) difference (%)

20 33 10.40

60 25.2 10.13 -0.59% -0.67% 14.1%

80 21.7 9.99 -0.57% -0.70% 22.4%

100 18.5 9.83 -0.55% -0.72% 31.7%

120 15.5 9.65 -0.53% -0.76% 42.5%

150 11.5 9.35 -0.50% -0.81% 61.8%

180 8.2 9.01 -0.47% -0.87% 85.3%

210 5.4 8.59 -0.44% -0.95% 116%

VAC 3230
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Table 2. Values of HcJ at various temperatures for VACODYM 

4514. Calculation of β using Equations (2) and (3). The value of HcJ 

at 20 °C is used as the low temperature value in both equations. 

Temp (°C) HcJ (kOe) ln (HcJ) β  (1/K) β  (1/K) difference (%)

20 15 9.62

60 10.27 9.24 -0.79% -0.95% 20.1%

80 8.3 9.02 -0.74% -0.99% 32.5%

100 6.6 8.79 -0.70% -1.03% 46.6%

120 5.16 8.55 -0.66% -1.07% 62.7%

VAC 4514
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The two tables above demonstrate the method people in industry 

use to find β, using equation (2). The large differences in the results 

produced by the two equations can clearly be seen, ranging from 14 

to 116%. This difference increases as ΔT increases. 

Besides using the parameter β to compare two competing 

materials, the parameter is also used to predict the value of HcJ at an 

intermediate temperature, within the temperature range used to 

determine β. To predict the value of HcJ at such a temperature, 

equations (2) and (3) must be rearranged. Rearranging equation (2) 

yields 

     20 1cJ cJH T H C T      (6) 

And rearranging equation (3) yields 

   20 T

cJ cJH T H C e    (7) 

where HcJ(T) is the value of HcJ at an intermediate temperature and 

HcJ(20 °C) is the value of HcJ at 20 °C. Equations (6) and (7) both 

assume that the lower temperature used for determining β is 20 °C. 

If a temperature range with a different lower temperature is used, 

then equations (6) and (7) must be adjusted accordingly. 

 

Table 3. An example of how well each equation predicts the value of 

HcJ at an intermediate temperature for VACODYM 3230. In this 

case a temperature range of 20 to 150 °C was used, with β=-

0.50%/K for equation (6) and β=-0.81%/K for equation (7), as 

reported in Table 1. 

Temp (°C) HcJ (kOe) HcJ (kOe) eq (6) HcJ (kOe) eq (7)

20 33 33.0 33.0

60 25.2 26.4 18.2

80 21.7 23.1 13.3

100 18.5 19.8 9.7

120 15.5 16.5 6.9

150 11.5 11.5 4.0

VAC 3230

 
 

In the example above, equation (6) does a noticeably better job of 

predicting the value of HcJ at intermediate temperatures. Using the 

data in Table 3, the sum of the squares of the difference between the 

experimental and calculated values was 5.83 for equation (6) and 

327 for equation (7).  

 

III. THE TEMPERATURE COEFFICIENT OF Br 

At this point, an obvious question to consider is: does the choice 

of equation to determine α affect the result, if we write a definition 

similar to equation (3)? 

First, we need to write the analogous equation to equation (3) for 

the behavior of Br, that is  
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The tables below show the calculation of α for the same materials 

used in Tables 1 and 2, comparing equations (1) and (8). 

 

Table 4. Values of Br at various temperatures for VACODYM 3230. 

Calculation of α using Equations (1) and (8). The value of Br at 20 

°C is used as the low temperature in both equations. 

Temp (°C) Br (kG) ln(Br) α  (1/K) α  (1/K) difference (%)

20 11.5 9.35

60 11.08 9.31 -0.091% -0.093% 1.9%

80 10.84 9.29 -0.096% -0.099% 3.0%

100 10.59 9.27 -0.099% -0.10% 4.2%

120 10.31 9.24 -0.10% -0.11% 5.6%

150 9.87 9.20 -0.11% -0.12% 7.8%

180 9.38 9.15 -0.12% -0.13% 10.5%

210 8.85 9.09 -0.12% -0.14% 13.7%
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Table 5. Values of Br at various temperatures for VACODYM 3230. 

Calculation of α using Equations (1) and (8). The value of Br at 20 

°C is used in both equations as the low temperature. 

Temp (°C) Br (kG) ln(Br) α  (1/K) α  (1/K) difference (%)

20 13.6 9.52

60 13 9.47 -0.11% -0.11% 2.27%

80 12.66 9.45 -0.12% -0.12% 3.62%

100 12.3 9.42 -0.12% -0.13% 5.11%

120 11.92 9.39 -0.12% -0.13% 6.74%

VAC 4514
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In both cases above, the differences are much less significant than 

was observed in Tables 1 and 2. However, they do show the same 

trend as the β calculation, an increase in the difference as ΔT 

increases. 

 

IV. DISCUSSION 

Equations (1) and (2) are like the well-known equation used to 

describe the thermal expansion of materials. 
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In fact, this type of expansion is often called linear expansion, in 

part because it is one-dimensional, but also implying that the effect 

is mathematically linear with temperature. Magnetic properties are 
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rarely linear as the temperature varies, so relying on equations that 

assume linear behavior is an invitation to potentially confusing 

results. 

The following figures show the behavior of Br and HcJ with 

temperature, an equation fitted to each data set and a correlation 

factor, R2. 
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Fig. 1. Plots of Br vs. temperature for VACODYM 3230 and 4514. 
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Fig. 2. Plots of HcJ vs. temperature for VACODYM 3230 and 4514. 

 

Fitting equations to each set of data in both graphs gave excellent 

results (R2 = 1) with a second order polynomial. Trying to fit other 

types of functions, e.g. exponential, linear, logarithmic and power 

were all good, (R2 > 0.96) but not as good as a simple second order 

polynomial. 

The small square term in all the fitted equations highlights why 

equations (1) and (2) have some trouble fitting the data of real 

materials. Although the square term is less significant in Figure 1 for 

the Br data, the influence of the square term is easier to see in Figure 

2 for the HcJ data, and demonstrates why equation (2) will give 

slightly different results, depending on the temperature range 

selected. 

The poorer fit of the exponential and logarithmic functions was 

unexpected. It has been suggested that equation (3) is more 

physically correct than equation (2) and therefore ought to give 

better results. But that did not happen in the examples examined 

here. One assumption used in the derivation of both equations (3) 

and (7) is that β is completely independent of temperature. 

[Wikipedia 2017] That assumption is likely not valid in this case, 

and perhaps invalid for permanent magnets more generally. This 

assumption may be the cause of equation (3) not fitting the data as 

well as expected. A similar comment would also apply to α and 

equation (8). 

 

The choice of units, SI or CGS, does not affect the determination 

of the temperature coefficient in any of the equations in this paper. 

 

V. CONCLUSION 

The paper shows that equation (3) is mathematically equivalent to 

equation (2), provided β is being measured at a single temperature, 

or over a small temperature differential. However, when these two 

equations are applied over a large temperature differential, as they 

routinely are, they yield divergent values of β. This is an undesirable 

situation. In our examples, equation (3) consistently yields a larger 

absolute numerical value of β than equation (2). In addition, 

equation (6) does a better job of predicting intermediate values of 

HcJ than equation (7). Because nearly all data found in the literature 

for β are based on equation (2), it should be favored over equation 

(3) for reporting the temperature coefficient of HcJ in permanent 

magnets in order to make rigorously valid comparisons and more 

accurate predictions of HcJ at intermediate temperatures. 

An analogous situation is also found for the reversible 

temperature coefficient of Br; however, the discrepancy is much less 

significant. 

At the very least, authors should reveal which equations are being 

used to determine the reversible temperatures coefficients, as well as 

the temperature range of the measurement, for the sake of 

transparency. 
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