

International Magnetics Association Permanent Magnet Tutorial

Permanent Magnets-The Basics

S. R. Trout Spontaneous Materials Indianapolis, IN October 24, 2005

Spontaneous Materials

Some Perspective

Roughly 90 % of the useful information about permanent magnets can be learned in 25 minutes. The remaining 10% takes a lifetime to learn.

#IMA

Anonymous Spontaneous Materials

Outline

- The three magnetic vectors: B, H and M
- Hysteresis Loops
- + The basic magnetic parameters: $M_s, B_r, H_{ci}, H_c, $$(BH)_{max}, H_s, and <math display="inline">\mu_r$
- Loadline
- The effects of temperature
 reversible
 irreversible

Spontaneous Materials

Magnetic Field, H

- The magnetic field created by passing current through a wire.
- Units: Oersted (Oe), Ampere-turn/meter (A/m)

Magnetization, M

- The magnetic state of a material, representing the sum of all the individual magnetic moments per unit volume.
- Magnetic moments arise from unpaired electron spins, usually in the 3d or 4f shells.
- Units: Gauss (G) for $4\pi M$ Tesla (T) for $\mu_0 M$
- \mathbf{B}_{i} is also in use, intrinsic induction

Flux Density or Induction, B

- The total concentration of magnetic flux in a region
- A combination of Magnetic Field and Magnetization
- Units: Gauss (G) Tesla (T)

#IMA

Spontaneous Materials

How are H, M and B related?

Induction, B is a combination of H and M.

How are H, M and B related?

Induction, B is a combination of H and M.

 $B=H + 4\pi M$

CGS units

#IMA

Spontaneous Materials

Spontaneous Materials

How are H, M and B related?

Induction, B is a combination of H and M.

 $B=H + 4\pi M$ CGS units

 $B = \mu_0 H + \mu_0 M$ SI units

 $\mu_0=4 \pi \times 10^{-7} \text{ Tesla-m/A}$

µ_oM=J, Polarization

Spontaneous Materials

Hysteresis

- · A delayed response to a stimulus
- · In this case, the stimulus is an applied magnetic field and the response is the magnetization or flux density

#IMA

Spontaneous Materials

Major Hysteresis Loop

#IMA

CGS

Some Interesting Relationships

Recoil Permeability, μ_r

Thermal Effects

For all ferromagnetic materials, the magnetization decreases as the temperature increases

Demagnetization Curves at Various Temperatures

#IMA

Spontaneous Materials

Reversible Thermal Properties

- Temperature coefficient of $\mathbf{B}_{r}, \ \alpha = \frac{1}{B_{r}} \left(\frac{\Delta B_{r}}{\Delta T} \right) \cdot 100\%$ Related to Curie Temperature

Temperature coefficient of

$$H_{ci}$$
, $\beta = \frac{1}{H_{ci}} \left(\frac{\Delta H_{ci}}{\Delta T} \right) \cdot 100\%$
– Related to Curie temperature
and coercivity mechanism

Typically, a temperature range is

Typical values (0 to 100°C)		
Material	α (%/°C)	β (%/°C)
Ferrite	-0.2	+0.2
Alnico	-0.02	$+0.01 (H_c)$
SmCo ₅	-0.04	-0.3
NdFeB	-0.09	-0.5

Spontaneous Materials

Irreversible Losses

- · A flux loss observed after exposure to temperature
- · Found to depend on three things: temperature, time and geometry (loadline)
- · Recovered by remagnetization!

Spontaneous Materials

Summary

• The three magnetic vectors: B, H and M

- Hysteresis Loops
- The basic magnetic parameters: $\mathbf{M}_{\mathrm{s}}, \mathbf{B}_{\mathrm{r}}, \mathbf{H}_{\mathrm{ci}}, \mathbf{H}_{\mathrm{c}},$

(BH) $_{max}$, H $_{s}$, and μ_{r}

- Loadline
- The effects of temperature
 - reversible

HIMA Irreversible

Spontaneous Materials