Recycling NdFeB Magnets: Why is it so counterintuitive?

S. R. Trout April 15, 2014

Outline

- Permanent magnets
 - What are they?
 - What do they do?
- The Rare Earths
- How are sintered NdFeB magnets processed?
- Where are the recycling opportunities?
 - Continuous
 - Non-continuous
- Stockpiling
- Final thoughts

What Are Permanent Magnets?

- Permanent magnets supply magnetic flux without any external supply of energy
- Resist demagnetization, H_{ci}
- Nd_{2-x}Dy_xFe₁₄B, SmCo, Ferrite, Alnico

What Do Permanent Magnets Do?

- What can we do with magnetic flux?
 - Torque: motor
 - Current: generator
 - Voltage: Hall effect sensor
 - Force
 - Linear Motion: speaker or actuator, linear motor
 - Levitation: MagLev
 - Magnetic braking

Hard drive

- Voice Coil Motor (VCM)
- Spindle motor
- 5x10⁸ per year
- 10 to 20 g of magnet

$$\left[\frac{5\times10^{8} drives}{year}\right] \left[\frac{10g}{drive}\right] \left[\frac{Nd}{3NdFeB}\right] \left[\frac{tonnes}{10^{6} g}\right] = 1600 tonnes / year$$

$$\left[\frac{19,000 tonnes REO}{year}\right] \left[\frac{Nd_{2}O_{3}}{8REO}\right] \left[\frac{0.85 Nd}{Nd_{2}O_{3}}\right] = 2000 tonnes / year$$

Source: Western Digital

Source: Magnequench

- Automotive
 - Hybrids
 - Electric Vehicles

Source: Toyota

- Wind Turbine
 - The gearbox problem
 - Direct drive solution
 - ~500kg/MW
 - The future?

Rare Earths

	Sc								
	Y								
	La								

Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu

Global Rare Earth Oxide Mine Production

Recent RE Metal Prices

Critical Materials Hub

- DOE Program
 - \$120 million, 5 years
 - National Labs
 - Academe
 - Industry
- Reduce criticality
 - Five of the most critical elements are rare earths

Source: DOE Announcement May 2012

Recycling Magnets

- Historically unimportant
 - Value
 - Difficulty

- Interest rises and falls with prices
- Center of Resource Recovery and Recycling (CR³)
 - Eu, Tb and Y oxides from lighting phosphors
 - Nd and Dy from magnets, mainly hard drives

Sintered NdFeB Mine to Magnets In 19 "easy" steps

step after separation has a yield >98%, except one.
Which one is it?

Three Main Scrap Sources

- Internal
 - Reclaim without external help
- Grinding Sludge
 - Circa 20% losses in slicing and grinding small magnets
 - Oxidized, contaminated
- End of Life (EOL) magnets

Internal Recycling

- Sources
 - Broken magnets
 - Skulls, dross
- Process
 - Remelt
 - Recycle in magnet making process
- Economics
 - Yield OK
 - Lower magnetic properties, limited
- Currently in use

Grinding Sludge

- Losses due to slicing and grinding magnets
 - About 20% loss in a magnet plant is sludge
 - About 25% of sludge is rare earth
- Highly oxidized and contaminated
- Digest in acid, reprecipitate rare earth
 - Mixed Nd, Pr, Dy, Tb oxalate
 - Convert to metal
 - RE separation likely not necessary
- About a wash economically on average
- Currently done on a limited scale

Grinding Sludge

Sintered	NdfeR	magnets =	5 × 10 kg	+ BCT	Report 2010
20% 3	ludge =	1×10 kg	Sudge.		
25% of	Sludge	is REO =	2.5 ×104	kg REO	
comp.	SL rel%	UDGE wt (kg)	MTN	PASS wt (kg).	
RED	100	2.5× 106	100	0	- Phase I
Nd ₂ O ₃	80	2 × 106	12	2.3 * 106	
Pro On	10	2.5 × 105	4.3	8.2× 10 ⁵	
Dy203	8	2 7 105	0.034	6.5×104	
Tla407.	2	5 4 104.	0.016	3× 10 ³	
			Castor data.		

Grinding Sludge

- Potential to be a significant resource
- Dy may be the cost driver and not Nd
- Emergency resource

End of Life Magnets

- Lots of disc drive magnets
 - Small, coated and difficult to liberate
 - We need adhesives that allow for easy removal
 - Low or no Dy
- Motor magnets
 - Larger magnets, circa 100 g
 - Many applications, all different
 - Higher Dy content, up to 10%

End of Life Magnets

- Remelt Magnets
 - Low Yields (60%)
 - Uninteresting economics
- Reuse Magnets
 - Measure & sell to be cut up
 - Helmholtz coil
 - Pulsed magnetometry
 - Better economics
 - Near 100% yield
 - Higher value: Selling a magnet, not scrap metal
 - Market needs to be developed
 - Currently not being done

Stockpiling

- A DoD thrust, how to keep raw materials for magnets available in an emergency
- Scrap as one partial solution
 - Grinding sludge is the real opportunity
- Stockpile grinding sludge, only process when
 - We have an emergency
 - RE prices are high
 - Stockpile as an oxalate or oxide to reduce volume

Final Thoughts

- Recycling magnets is a good partial solution to the critical materials crisis.
- Dy may be the cost driver
 - Dy has higher value and is more critical
 - Older products have higher Dy levels
- Obey Stephen Covey's Habit #2
 - Begin with the end in mind.
 - Reusing magnets as part of the process, not an afterthought
 - EOL friendly adhesives and assembly
- Recycling as a stockpiling activity
 - Collect grinding sludge but don't fully reprocess until justified